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1. INTRODUCTION—D. S. Arndt, J. Blunden, and 
K. M. Willett
This is the 26th edition of the annual assessment 

now known as State of the Climate. The year 2015 
saw the toppling of several symbolic mileposts: no-
tably, it was 1.0°C warmer than preindustrial times, 
and the Mauna Loa observatory recorded its first 
annual mean carbon dioxide concentration greater 
than 400 ppm. Beyond these more recognizable 
markers, changes seen in recent decades continued. 

The year’s exceptional warmth was fueled in part 
by a nearly year-round mature El Niño event, which 
is an omnipresent backdrop to the majority of the 
sections in this edition.

The ENSO phenomenon is perhaps the most vis-
ible reminder of connections across regions, scales, 
and systems. It underscores the circumstance that 
the climate system’s components are intricately 
connected, to each other and to the world’s many 
natural and human systems. 

To that end, this year’s SoC has an emphasis on 
ecosystems; several chapters have dedicated a side-
bar to the complex relationship between a changing 
climate and its impact on living systems. This notion 
of connectedness—between climate, landscape, and 
life; between our daily work and the expression of 
its meaning; between planetary-scale drivers and 
humble living things; between the abstraction and 
rigor of data and the reality and complexity of their 
importance; and especially between one generation 
and the next—inspires and informs much of the 
work within this volume.

Our cover images this year reflect these intimate 
connections. Many of the shapes in the images are 
drawn, quite literally, from time series represented 
in this volume. The artist, Jill Pelto, is a practicing 
Earth scientist whose work reflects her field experi-
ence and her interpretation of the connection be-
tween global change, landscape, and life. Her father, 
Mauri, is both a longtime contributor to the State 
of the Climate series and a steward of a prominent 
global glacier dataset.

To convey these connections so beautifully and 
generously is a gift; we are thankful to artist and sci-
entist alike, for sharing their talents and disciplines 
with the community.

Finally, we wish one of our dearest and most 
valuable connections, our technical editor, Mara 
Sprain, a speedy recovery from an unexpected health 
challenge. Her consistency and diligence continue 
to be a model for this series.

An overview of findings is presented in the 
Abstract, Fig. 1.1, and Plate 1.1. Chapter 2 features 
global-scale climate variables; Chapter 3 highlights 
the global oceans; and Chapter 4 includes tropical 
climate phenomena including tropical cyclones. The 
Arctic and Antarctic respond differently through 
time and are reported in separate chapters (5 and 6, 
respectively). Chapter 7 provides a regional perspec-
tive authored largely by local government climate 
specialists. Sidebars included in each chapter are 
intended to provide background information on a 
significant climate event from 2015, a developing 
technology, or an emerging dataset germane to the 
chapter’s content. A list of relevant datasets and their 
sources for all chapters is provided as an Appendix.
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ESSENTIAL CLIMATE VARIABLES—K. M. Willett, J. BLUNDEN AND D. S. ARNDT

Time series of major climate indicators are 
again presented in this introductory chapter. Many 
of these indicators are essential climate variables 
(ECVs), originally defined in GCOS 2003 and up-
dated again by GCOS in 2010.

The following ECVs, included in this edition, 
are considered “fully monitored,” in that they are 
observed and analyzed across much of the world, 
with a sufficiently long-term dataset that has peer-
reviewed documentation:

• Atmospheric Surface: air temperature, precipita-
tion, air pressure, water vapor, wind speed and 
direction.

• Atmospheric Upper Air: earth radiation budget, 
temperature, water vapor, wind speed and direc-
tion.

• Atmospheric Composition: carbon dioxide, meth-
ane, other long-lived gases, ozone.

• Ocean Surface: temperature, salinity, sea level, sea 
ice, current, ocean color, phytoplankton.

• Ocean Subsurface: temperature, salinity.
• Terrestrial: snow cover, albedo.

ECVs in this edition that are considered “par-
tially monitored,” meeting some but not all of the 
above requirements, include:

• Atmospheric Upper Air: cloud properties.
• Atmospheric Composition: aerosols and their 

precursors.
• Ocean Surface: carbon dioxide, ocean acidity.
• Ocean Subsurface: current, carbon.
• Terrestrial: soil moisture, permafrost, glaciers 

and ice caps, river discharge, groundwater, ice 
sheets, fraction of absorbed photosynthetically 
active radiation, biomass, fire disturbance.

Remaining ECVs that are desired for the future 
include:

• Atmospheric Surface: surface radiation budget.
• Ocean Surface: sea state.
• Ocean Subsurface: nutrients, ocean tracers, ocean 

acidity, oxygen.
• Terrestrial: water use, land cover, lakes, leaf area 

index, soil carbon.

Plate 1.1. Global (or representative) average time series for essential climate variables. Anomalies are shown 
relative to the base period in parentheses although original base periods (as shown in other sections of the 
report) may differ. The numbers in the square brackets that follow in this caption indicate how many reanaly-
sis (blue), satellite (red), and in situ (black) datasets are used to create each time series in that order. (a) N. 
Hemisphere lower stratospheric ozone (March) [0,5,1]; (b) S. Hemisphere lower stratospheric ozone (Octo-
ber) [0,5,1]; (c) Apparent transmission (Mauna Loa) [0,0,1]; (d) Lower  stratospheric temperature [3,3,4]; (e) 
Lower tropospheric temperature [3,2,4]; (f) Surface  temperature [4,0,4]; (g) Extremes (warm days (solid) and 
cool nights (dotted)) [0,0,1]; (h) Arctic sea ice extent (max (solid) and min (dashed)) [0,0,2]; (i) Antarctic sea 
ice extent (max (solid) and min (dashed)) [0,0,2]; (j) Glacier cumulative mean specific balance [0,0,1]; (k) N. 
Hemisphere snow cover extent [0,1,0]; (l) Lower stratospheric water vapor [0,1,0]; (m) Cloudiness [1,6,1]; (n) 
Total column water vapor–land [0,1,2]; (o) Total column water vapor–ocean [0,2,0]; (p) Upper Tropospheric 
Humidity [1,1,0]; (q) Specific humidity–land [3,0,4]; (r) Specific humidity–ocean [3,1,3]; (s) Relative humid-
ity–land [2,0,4]; (t) Relative humidity–ocean [2,0,2]; (u) Precipitation–land [0,0,3]; (v) Precipitation–ocean 
[0,3,0]; (w) Ocean heat content (0–700 m) [0,0,4]; (x) Sea level rise [0,1,0]; (y) Tropospheric ozone [0,1,0]; (z) 
Tropospheric wind speed at 300 hPa for 20°–40°N [5,0,1]; (aa) Land wind speed [0,0,2]; (ab) Ocean wind speed 
[4,1,2]; (ac) Biomass burning [0,2,0]; (ad) Soil moisture [0,1,0]; (ae) Terrestrial groundwater storage [0,1,0]; 
(af) FAPAR [0,1,0]; (ag) Land surface albedo–visible (solid) and infrared (dashed) [0,2,0]. 
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SIDEBAR 1.1: THE 2015/16 EL NIÑO COMPARED WITH OTHER  
RECENT EVENTS—D. E. PARKER, K. M. WILLETT, R. ALLAN, C. SCHRECK, AND D. S. ARNDT

The climate of 2015 was clearly influenced by the strong 
2015/16 El Niño. This sidebar places the event, still ongoing as 
of May 2016, into context by comparison to recent El Niños 
of similar magnitude.

Primary indicators of ENSO are predominantly based on 
SST and surface pressure changes from across the Indo-Pacific 
region. By most measures, the 2015/16 El Niño was one of the 
strongest on record, on par with those of 1982/83 and 1997/98. 
Figure SB1.1 shows the time evolution of tropical Pacific 
SSTs (from HadISST1.1) since 1970. The SST imprint for each 
event is unique. For example, the strongest SST anomalies in 
2009/10 occurred in the central Pacific, while those for 2015/16, 
1997/98, and 1982/83 were strongest in the eastern Pacific. 
The 2015/16 event stands as one of the more protracted warm 
events, with warm anomalies first appearing in summer 2014 
and becoming firmly established in spring 2015.

Regionally-averaged SST anomalies (Fig. SB1.2) highlight 
the 2015/16 event’s position among the most intense El Niño 
events. Notably, the Niño-4 index reached a record +1.8°C 
during November 2015. The 2015/16 event was only the third 
since 1980 (following 1982/83 and 1997/98) to exceed +2.0°C 
in the Niño-3, Niño-3.4, and Niño-1+2 regions; however, 
across Niño-1+2, the 2015/16 event, while quite strong, was 
almost 2°C weaker than the two strongest events: 1982/83 
and 1997/98. 

The 2015/16 El Niño appeared in the Southern Oscillation 
index (SOI; sea level pressure difference between Darwin and 
Tahiti; section 2e1, Fig. 2.30a,b, Fig. 4.1b) early in 2014, maturing 
in early 2015 and continuing into 2016. By this measure, it is a 
protracted event (Allan and D’Arrigo 1999). However, many 
other indicators are in use, reflecting the large variation in 
duration and character of each event. The oceanic Niño index 
(ONI; seasonal 3-month average of Niño-3.4 SSTs) and the 
Equatorial Southern Oscillation index (EQ-SOI; surface pres-
sure difference between Indonesia and the eastern equatorial 
Pacific) showed neutral conditions until early 2015 (section 4b; 
Fig. 4.1). The Niño-3 and 3.4 regions, although mostly warm 
during 2014, were neither consistently nor significantly warmer 
than the designated threshold until early 2015 (sections 3b, 
4b; Fig. 4.3). Nevertheless the protracted warmth over the 
tropical Pacific is clear from early 2014 onwards, as is the very 
different nature of each preceding El Niño event and its wider 
influence on climate. 

El Niño events tend to elevate global mean surface tem-
peratures and, indeed, 2015 reached record warmth (section 
2b1). The history of these events since the mid-20th century in 

relation to global surface temperature suggests that the ongo-
ing event will likely have a slightly greater effect on the global 
surface temperature of 2016 than on that of 2015.

Fig. SB1.1. Sea surface temperature (relative to 1961–
90 base period) averaged between 5°S and 5°N over 
the Pacific from 120°E to 80°W, based on HadISST1.1 
(Rayner et al. 2003).
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Subsurface ocean temperature anomalies along 
the equatorial Pacif ic show signif icant El Niño 
characteristics from March–May onwards (section 
4b1; Fig. 4.6). Compared to 1997 (which predated 
the ARGO float network) the precursor (January) 
warmth near the thermocline was much weaker, but 
the anomalies nearer the surface in December were 
of similar magnitude (Online Fig. S1.1).

Characteristic weakening/reversal of easterlies 
in the equatorial central Pacific was evident in the 
2015 annual average surface winds (Plate 2.1s) with 
a similar signal at 850 hPa (Plate 2.1r). In late 2015 
when El Niño was strongest, the negative wind 
anomaly in the tropical Pacific did not extend as far 
eastward as in late 1997, and the patterns were much 
less organized in the Indian and Atlantic Oceans 
(Online Fig. S2.22). 

During El Niño events, cooling (warming) of 
the ocean surface and subsurface in the western 
(eastern) tropical Pacific, in addition to reduced drag 
on the ocean surface by weakened easterly winds, 
drives sea level fall (rise) in the western (eastern) 
tropical Pacific. The net effect is an increase in global sea level 
(section 4f; Fig. 3.17), evident in both 1997/98 and 2015/16.

Similar to other major El Niños, the 2015/16 event affected 
many parts of the global climate. Tropical cyclone activity, with 
respect to accumulated cyclone energy (ACE), was suppressed 
in the Atlantic Ocean (section 4e2) but enhanced across the 
North Pacific regarding both ACE and number of storms 
(sections 4e3, 4e4) The central Pacific was particularly active, 
setting several records. Global rainfall patterns were also 
greatly impacted (Section 4d1). The equatorial Pacific, Gulf of 
Mexico, and South America saw enhanced rainfall. Meanwhile, 
southern Africa, Australia, the Amazon, Caribbean, and Cen-
tral America saw decreased rainfall. These patterns led to a 
substantial increase in the global land area covered by severe 
or extreme drought in 2015, similar to 1982/83 but not 1987/88 
or 1997/98, possibly owing to countervailing influences such 
as extratropical atmospheric circulation patterns (section 2d9; 
Fig. 2.28; Plate 2.1f; Fig. 2.29). 

The warmth in 2015 enabled an increase in total column 
water vapor (TCWV) of ~1 mm globally over both land and 
ocean (section 2d2; Figs. 2.16, 2.17). There were broadly simi-
lar increases following 1987/88, 1997/98, and 2009/10. Over 
the Pacific, 2015 lacked the dry anomaly north of the equator 
present in 1997 (Online Fig. S2.13). The dry anomaly over the 
Maritime Continent extended much farther west in 1997.  

CONT. SIDEBAR 1.1: THE 2015/16 EL NIÑO COMPARED WITH OTHER  
RECENT EVENTS—D. E. PARKER, K. M. WILLETT, R. ALLAN, C. SCHRECK, AND D. S. ARNDT

Fig. SB1.2. Time series of various ENSO indicators: (a) Niño-
3: 5°S–5°N, 150°–90°W; (b) Niño-4: 5°S–5°N, 160°E–150°W; 
(c) Niño-3.4: 5°S–5°N, 170°–120°W; (d) Niño-1+2:  10°S–0°, 
90°–80°W; (e) oceanic Niño index (ONI); (f) Southern Oscillation 
index (SOI); (g) Equatorial Southern Oscillation index (EQ-SOI). 
The Niño region time series are from HadISST1.1 (Rayner et al. 
2003). The ONI and EQ-SOI are from the NOAA Climate Predic-
tion Center (www.cpc.ncep.noaa.gov/data/indices/). The SOI is 
from the Australian Bureau of Meteorology.

Although global average total cloudiness did not change in 
2015 and shows no clear ENSO signal (Fig. 2.20), there was a 
dramatic shift of ice cloud from the warm pool region of the 
western Pacific to the central Pacific during 2015, and likewise 
during 1997 (section 2d4; Fig. 2.21). This shift followed the 
displacement of convection during the events. The eastward 
displacement was greater in 1997/98, matching that event’s 
more eastward peak SST anomaly. Related regional features 
are apparent in 2015 annual averages of many hydrological 
cycle ECVs (Plate 2.1). 

The tendency for increased drought in the tropics during El 
Niño leads to increased release of CO2 from increased tropical 
wildfires. In 2015, out-of-control agricultural biomass burning 
was exacerbated in Indonesia (see Sidebar 2.2) by ignition 
of the subsurface peat. These changes in terrestrial carbon 
storage likely contributed to the record 3.1 ppm increase in 
atmospheric CO2 at Mauna Loa Observatory from 1 January 
2015 to 1 January 2016. The previous highest annual increase 
of 2.9 ppm occurred in 1998. 

Biomass burning in Indonesia also led to regional increases 
in atmospheric carbon monoxide, aerosols, and tropospheric 
ozone in 2015 (Sidebar 2.2). Huijnen et al. 2016 suggest that 
the 2015 carbon emissions from the Indonesian fires were the 
largest since those during the El Niño year of 1997 (section 
2g7; Fig. 2.60), although still only 25% of the 1997 emissions.


